1,061 research outputs found

    The STACEE-32 Ground Based Gamma-ray Detector

    Full text link
    We describe the design and performance of the Solar Tower Atmospheric Cherenkov Effect Experiment detector in its initial configuration (STACEE-32). STACEE is a new ground-based gamma ray detector using the atmospheric Cherenkov technique. In STACEE, the heliostats of a solar energy research array are used to collect and focus the Cherenkov photons produced in gamma-ray induced air showers. The large Cherenkov photon collection area of STACEE results in a gamma-ray energy threshold below that of previous detectors.Comment: 45 pages, 25 figures, Accepted for publication in Nuclear Instruments and Methods

    Detection of Atmospheric Cherenkov Radiation Using Solar Heliostat Mirrors

    Full text link
    The gamma-ray energy region between 20 and 250 GeV is largely unexplored. Ground-based atmospheric Cherenkov detectors offer a possible way to explore this region, but large Cherenkov photon collection areas are needed to achieve low energy thresholds. This paper discusses the development of a Cherenkov detector using the heliostat mirrors of a solar power plant as the primary collector. As part of this development, we built a prototype detector consisting of four heliostat mirrors and used it to record atmospheric Cherenkov radiation produced in extensive air showers created by cosmic ray particles.Comment: 16 latex pages, 8 postscript figures, uses psfig.sty, to be published in Astroparticle Physic

    A portable and autonomous mass spectrometric system for on-site environmental gas analysis

    Get PDF
    We developed a portable mass spectrometric system (“miniRuedi”) for quantificaton of the partial pressures of He, Ne (in dry gas), Ar, Kr, N2, O2, CO2, and CH4 in gaseous and aqueous matrices in environmental systems with an analytical uncertainty of 1−3%. The miniRuedi does not require any purification or other preparation of the sampled gases and therefore allows maintenance- free and autonomous operation. The apparatus is most suitable for on-site gas analysis during field work and at remote locations due to its small size (60 cm × 40 cm × 14 cm), low weight (13 kg), and low power consumption (50 W). The gases are continuously sampled and transferred through a capillary pressure reduction system into a vacuum chamber, where they are analyzed using a quadrupole mass spectrometer with a time resolution of ≲1 min. The low gas consumption rate (<0.1 mL/min) minimizes interference with the natural mass balance of gases in environmental systems, and allows the unbiased quantification of dissolved-gas concentrations in water by gas/water equilibration using membrane contractors (gasequilibrium membrane-inlet mass spectrometry, GE-MIMS). The performance of the miniRuedi is demonstrated in laboratory and field tests, and its utility is illustrated in field applications related to soil-gas formation, lake/atmosphere gas exchange, and seafloor gas emanations

    Increasing Employee Awareness of the Signs and Symptoms of Heart Attack and the Need to Use 911 in a State Health Department

    Get PDF
    INTRODUCTION: Early recognition of the signs and symptoms of a heart attack can lead to reduced morbidity and mortality. METHODS: A workplace intervention was conducted among 523 Montana state health department employees in 2003 to increase awareness of the signs and symptoms of heart attack and the need to use 911. All employees received an Act in Time to Heart Attack Signs brochure and wallet card with their paychecks. Act in Time posters were placed in key workplace areas. A weekly e-mail message, including a contest entry opportunity addressing the signs and symptoms of heart attack, was sent to all employees. Baseline and follow-up telephone surveys were conducted to evaluate intervention effectiveness. RESULTS: Awareness of heart attack signs and symptoms and the need to call 911 increased significantly among employees from baseline to follow-up: pain or discomfort in the jaw, neck, or back (awareness increased from 69% to 91%); feeling weak, light-headed, or faint (awareness increased from 79% to 89%); call 911 if someone is having a heart attack or stroke (awareness increased from 84% to 90%). Awareness of chest pain, pain or discomfort in the arms or shoulders, and shortness of breath were more than 90% at baseline and did not increase significantly at follow-up. At baseline, 69% of respondents correctly reported five or more of the signs and symptoms of heart attack; 89% reported correctly at follow-up. CONCLUSION: This low-cost workplace intervention increased awareness of the signs and symptoms of heart attack and the need to call 911

    Constraints on the relationship between stellar mass and halo mass at low and high redshift

    Full text link
    We use a statistical approach to determine the relationship between the stellar masses of galaxies and the masses of the dark matter halos in which they reside. We obtain a parameterized stellar-to-halo mass (SHM) relation by populating halos and subhalos in an N-body simulation with galaxies and requiring that the observed stellar mass function be reproduced. We find good agreement with constraints from galaxy-galaxy lensing and predictions of semi-analytic models. Using this mapping, and the positions of the halos and subhalos obtained from the simulation, we find that our model predictions for the galaxy two-point correlation function (CF) as a function of stellar mass are in excellent agreement with the observed clustering properties in the SDSS at z=0. We show that the clustering data do not provide additional strong constraints on the SHM function and conclude that our model can therefore predict clustering as a function of stellar mass. We compute the conditional mass function, which yields the average number of galaxies with stellar masses in the range [m, m+dm] that reside in a halo of mass M. We study the redshift dependence of the SHM relation and show that, for low mass halos, the SHM ratio is lower at higher redshift. The derived SHM relation is used to predict the stellar mass dependent galaxy CF and bias at high redshift. Our model predicts that not only are massive galaxies more biased than low mass ones at all redshifts, but the bias increases more rapidly with increasing redshift for massive galaxies than for low mass ones. We present convenient fitting functions for the SHM relation as a function of redshift, the conditional mass function, and the bias as a function of stellar mass and redshift.Comment: 21 pages, 17 figures, discussion enlarged, one more figure, updated references, accepted for publication in Ap
    corecore